Lifted Cycle Inequalities for the Asymmetric Traveling Salesman Problem

نویسندگان

  • Egon Balas
  • Matteo Fischetti
چکیده

We investigate the family of facet defining inequalities for the asymmetric traveling salesman (ATS) polytope obtainable by lifting the cycle inequalities. We establish several properties of this family that earmark it as the most important among the asymmetric inequalities for the ATS polytope known to date: (i) The family is shown to contain members of unbounded Chvatal rank, whereas most known asymmetric inequalities are of Chvatal rank 1. (ii) For large classes within the family a coefficient pattern is identified that makes it easy to develop efficient separation routines, (iii) Each member of the family is shown to have a counterpart for the symmetric TS (STS) polytope that is often new, and is obtainable by mapping the inequality for the ATS polytope into a certain face of the STS polytope and then lifting the resulting inequality into one for the STS polytope itself.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New facets of the STS polytope generated from known facets of the ATS polytope

While it was known for a long time how to transform an asymmetric traveling salesman problem on the complete graph with n vertices into a symmetric traveling salesman problem on an incomplete graph with 2n vertices, no method was available until recently for using this correspondence to derive facets of the symmetric traveling salesman polytope from facets of the asymmetric one. In this paper w...

متن کامل

An extended approach for lifting clique tree inequalities

We present a new lifting approach for strengthening arbitrary clique tree inequalities that are known to be facet defining for the symmetric traveling salesman problem in order to get stronger valid inequalities for the symmetric quadratic traveling salesman problem (SQTSP). Applying this new approach to the subtour elimination constraints (SEC) leads to two new classes of facet defining inequa...

متن کامل

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

An Approach for Solving Traveling Salesman Problem

In this paper, we introduce a new approach for solving the traveling salesman problems (TSP) and provide a solution algorithm for a variant of this problem. The concept of the proposed method is based on the Hungarian algorithm, which has been used to solve an assignment problem for reaching an optimal solution. We introduced a new fittest criterion for crossing over such problems, and illu...

متن کامل

Random gravitational emulation search algorithm (RGES (in scheduling traveling salesman problem

this article proposes a new algorithm for finding a good approximate set of non-dominated solutions for solving generalized traveling salesman problem. Random gravitational emulation search algorithm (RGES (is presented for solving traveling salesman problem. The algorithm based on random search concepts, and uses two parameters, speed and force of gravity in physics. The proposed algorithm is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 1999